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ABSTRACT 

In this paper restricted differential operator rings are studied. A restricted 
differential operator ring is an extension of a k-algebra R by the restricted 
enveloping algebra of a restricted Lie algebra g which acts on R. This is an 
example of a smash product R # H where H ~ u(~). We actually deal with a 
more general twisted construction denoted by R • g where the restricted Lie 
algebra 0 is not necessarily embedded isomorphically in R • 0. Assume that g is 
finite dimensional abelian. The principal result obtained is Incomparability, 
which states that prime ideals Pj _C P2 C R • g have different intersections with 
R. We also study minimal prime ideals of R • g when R is g-prime, showing 
that the minimal primes are precisely those having trivial intersection with R, 
that these primes are finite in number, and their intersection is a nilpotent 
ideal. Prime and primitive ranks are considered as an application of the 
foregoing results. 

Introduction 

The study of prime ideals in ring extensions such as differential operator 
rings and crossed products was undertaken in [4, 12]. Prime ideals have been 
studied for finite normalizing extensions, extending results for crossed pro- 
ducts of finite groups, in [5, 6, 7]. More recently, Hopf algebra smash products 
have been studied in [2, 3], extending results on group actions. 

In this paper restricted differential operator rings are studied. A restricted 
differential operator ring is an extension of a k-algebra R by the restricted 
enveloping algebra of a restricted Lie algebra ~ which acts on R. This is an 
example of a smash product R ~:H where H = u(~). We actually deal with a 
more general twisted construction denoted by R • ~ where the restricted Lie 
algebra g is not necessarily embedded isomorphically in R • ~. 
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Assume that g is finite dimensional abelian. The principal result obtained is 
Incomparability (Theorem 19) which states that prime ideals Pm ~ P2 C R • g 
have different intersections with R. We also study minimal prime ideal ofR • g 
when R is ~-prime, showing that the minimal primes are precisely those having 
trivial intersection with R, that these primes are finite in number, and their 
intersection is a nilpotent ideal. This characterization is stated in Theorem 22. 
Prime and primitive ranks are considered in Theorem 24 as an application of 
the foregoing results. 

In studying prime ideals in R • g we are led to the study of  ~-prime rings R. 
Here it is useful to construct the symmetric quotient ring S of R and the 
extension S • I]. Enough of the prime ideal structure is preserved by S • g so we 
may lift certain questions about primes. The strategy followed is similar to that 
of [4]. 

The paper begins with a construction of R ,  g and its basic properties. 
Lemmas 2 through 10 deal with ~-prime ideals, the quotient rings S and the 
extensions S ,  g. A partial ideal correspondence is stated in Lemma 10, and 
this fact is used heavily to transfer questions to S • t~. The proof of Incompara- 
bility breaks down into two cases: When t~ is outer on S, and g is abelian, R • g 
has the ideal intersection property where every nonzero ideal of R ,  g has 
nonzero intersection with R. Theorem 11 and its corollaries deal with the 
outer case. When g is inner in S, Theorem 17 reduces the question to prime 
ideals of a finite dimensional algebra over a field. Incomparability is proved in 
Theorem 19 and is then applied to complete the correspondence started in 
Lemma 10. More precisely, theorem 20 states that the prime ideals of  R • 
having zero intersection with R is in bijective correspondence with the 
similarly defined set of primes in S ,  g. This is then used to characterize 
minimal primes in Theorem 21 and our "Going Down" result, Corollary 22. 
Primitive ideals are examined in Lemma 23, where versions of classical 
restriction and induction are stated. This result allows us to handle primitive 
ideals and compute the prime and primitive ranks of R ,  g, resulting in 
Theorem 24. 

In closing we present an example showing that restricted differential opera- 
tor rings are not (intermediate) normalizing extensions and therefore are not 

covered by results in [5, 6, 7]. It is also remarked that Theorem 17 yields 
information on smash products R # H where the action of the Hopf algebra H 
is inner on R. 

The author would like to thank D. S. Passman for his helpful comments. 
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NOTATmN. Throughout this chapter R shall denote a k-algebra of charac- 
teristic p > 0 where k is contained in R. g shall denote a restricted Lie algebra 
over k which acts on R via a k-linear map t~ : ~--* Derk R. ~ need not be a 
restricted Lie algebra homomorphism,  but is twisted in a way (as we shall see) 
so that we may construct an associative restricted differential operator ring 
with underlying space R ® u(g). 

If  ~ happens to be a homomorphism,  we obtain the smash product  R # u(I]) 
(see [2, 3]). 

Basic information on restricted Lie algebras is contained in [10]. 

Let x ~ , . . . ,  x~ be a basis for ~. Then a version of the Poincare-Birkhoff-Witt  
theorem says that monomials of  the form x[, • • .x~',, where 0 =v< < p,  from a 
basis for u(~). Such monomials  are said to be standard and are denoted by x '  
where v = (v~, . . . .  v~). Set I vl = ~: vi, ~' = @, . . . t~ :  and ~x, -- d~i. 

Restricted differential operator rings 

Let us discuss how the associative algebra R • ~ might be constructed. We 
begin by constructing a twisted semidirect product  of R,  viewed as a restricted 
Lie algebra, and g which acts on R via the map ~: g---, Derk R. To this end, let 
R • g be the direct sum of R and ~ and define the commutator  and p th  power 
map in R ~ I] by: 

and 
[(a, x), (b, y)] -- ([a, b] + t~x(b) - t~y(a) + t(x, y), [x, y]), 

(a, x) tpl -- (a p + n(a,  x), xtPl), 

where a, b E R  and x, yEg.  Here t : g X g - - , R ,  and n : R  ~ g ~ R  are maps 
which must  satisfy certain properties in order for R • g to be a restricted Lie 
algebra. For example t must  be a Lie 2-cocycle for R • ~ to be a Lie algebra (as 
in [4]); certain additional relations involving lr must  be satisfied for R • g to be 

restricted. These relations appear to be related to restricted Lie cocycles of  it, 
though we need not deal with this aspect here (see [9]). 

(R, 0) is a copy of  R which we identify with R.  The image g -- (0, ~]) is twisted 
by t and n : x  tpl--x ' ip l+n(0 ,x)  and [X ,?]=[x ,y]+t (x , y ) .  Thus 

(R • g)/R ~ ~. 
Now R • ~ is constructed as done in [4]. The difference here is that we take 

the restricted enveloping algebra o fR  • It, take a factor ring, and end up with a 
ring R • ~ with underlying k-space R ®k U(~). The multiplication in R • g is 
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determined by the Lie bracket and the pth-power map in R • g, and the 

multiplication in R. 

R • g is a free left and right R-module with basis consisting of restricted 

standard monomials in {Xi} where x~, x2 , . . ,  forms a basis for ~. Thus every 
a ~ R  • g is uniquely expressible as a = Z a ~  ~, a~ ER.  

DEFINrrmN. Let A be an ideal of  R. Define 

Ivl~0 

= {a ER [ 5V(a)EA for all v}. 

Here v ranges over dim g-tuples (v~, v2,. . .)  with 0 < vi < p. (A :g) is the largest 

g-invariant ideal of  R contained in A (here Jt°'°."~(A ) = A). 

R is said to be g-prime if g acts on R and the product of  g-invariant ideals is 

nonzero, g-prime ideals are g-invariant ideals with a g-prime factor ring. 

The next lemma establishes a bijective, order-preserving correspondence 
between prime and g-prime ideals of  R when g is finite-dimensional. 

LEMMA 1. Let g be finite-dimensional. 
(i) Let Q be a g-prime ideal of  R. Then there is a unique prime ideal 

N(Q) D Q such that Q contains a power of  N(Q). Thus N(Q) is the unique 
minimal prime containing Q and (N(Q) : g) = Q. 

(ii) Let P be a prime ideal of R. Then (P:g)  is a ~-prime ideal with 
N((P: g)) ---- e .  

PROOF. We may assume that Q = 0 to prove (i). If  t~ is a derivation of R, 
and M an ideal of  R then notice that t~(M t) c M t- 1 for all 1. Thus for tuples v, 
t~'(M t) c M t- iv I. Let m = (p - 1) dim g and suppose (M: g) = 0. Then for all v 
with [vl < m we have ~V(Mm+~) C M. Thus M ra+t C ( g :  g) = 0. 

Let J b e  a nilpotent ideal of  R. Since R is g-prime, we must have (J:  g) -- 0. 

Now applying the result of  the preceding paragraph, we have J "  +t -- 0. 

What we have shown is that any nilpotent ideal is nilpotent of  index at most 

m + 1; thus if N - - N ( 0 )  denotes the sum of all nilpotent ideals of  R, then 

N m +1 _ 0. N is clearly the unique largest nilpotent ideal of  R, and by the 

preceding paragraph N is the largest ideal with (N: g) -- 0. Set N --- N(Q) 
N(0). 

To complete this proof of (i), let At and A2 be ideals of  R strictly containing 

N. Then since Nis maximal such that (N: g) = 0, (Ai : g) ~ 0 for i = 1, 2. By the 
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g-primeness of R, we see that 0 4~ (A1 : g)(A2 : ~) CAB. Since the product of  
g-invariant ideals is g-invariant, we have AB CN.  This shows that N is prime, 

and being nilpotent, N is surely a minimal prime. 

Let A ~ and A2 be g-invariant ideals of R with A~A2 C (P: g) where P is a prime 

ideal. Then AIA2 c P, so Ai c P for some i. Hence At = (A, : ~) C (P : ~), 

showing that (P : g) is g-prime. As in the proof of (i), P is nilpotent mod(P : g), 

so N((P: g)) = P. This completes the proof of the lemma. 

In particular, this lemma states that a g-prime ring has a unique largest 

nilpotent ideal, and this ideal is prime. 

Next we mention some basic facts relating ideals of  R and R ,  g. The 

following two easy lemmas are proved in the same way as for differential 

operator rings [4, §2]. 

LEMMA 2. Let A be a ~-invariant ideal o f  R; then A (R • ~) = ( R • g)A is an 

ideal o f  R • g. Furthermore A (R • g) N R = A. 

This ideal shall be denoted A • g. 

LEMMA 3. Let P be an ideal o f  R • g. Then P A R is a g-invariant ideal o f  R.  

Furthermore i f  P is a prime ideal o f  R • g, then P f3 R is a g-prime ideal of  R.  

Conversely we have 

LEMMA 4. Let A be a g-prime ideal o f  R; then there exists a prime ideal 

P c R , g  with P ¢q R = A .  

PROOF. By Lemma 2 there exists an ideal I with I t3 R = A. Applying 

Zorn's Lemma, there exists a maximal such ideal P, which is easily seen to be 

prime using Lemma 3. 
Notice that (R • g)/(A • ~) ~ (R/A) • ~, some twisted restricted differential 

operator ring over R/A.  Thus when studying primes P with a fixed intersection 

with R we may pass to (R/P (~ R)  ,~  and assume that R is g-prime. 

The quotient ring of a ~-prime ring 

In studying prime ideals of  restricted differential operator rings R • g we are 

led to the case where R is ~-prime. It is then useful to construct a (Martindale) 

quotient ring of R. 
Let ~r = ~r(R) denote the set of  g-invariant ideals of  a g-prime ring R. As is 

done in [4], we use the two-sided quotient ring S of R with respect to ~r. Set 
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S - - R  e. This notation shall be fixed when R is g-prime, unless otherwise 
specified. 

Briefly, S = R e can be described as equivalence classes of  pairs of  maps 
( f ,  g) where f :  A -~ R, g : B ~ R (.4, B E ,~') are left and right module homo- 
morphisms, respectively, satisfying (a f )b  = a(gb) for a EA and b EB.  Two 
such pairs are defined to be equivalent if they agree on a common  pair of 
domains. Alternatively, S can be described as the subring of the left ring of 
quotients consisting of elements s such that sA C R for some A E 3 ~'. This latter 
construction was used by Kharchenko in [11]. In fact the map induced by 
( f , g ) ~ f e m b e d s  S into the left quotient ring. More information on this 
symmetric quotient ring may be found in [14]. 

The following lemma shows that S is large enough to contain all derivations 
which become inner in a one-sided quotient ring. 

LEMMA 5. Let D be a derivation o f  a g-prime ring R such that D(A ) c A for 

aliA E ~ .  I f  there exists d, an element o f  the left ring o f  quotients o f  R,  such that 

D(r) = [d, r] 

for all r E R , then d E S ,  the two-sided quotient ring o f  R . 

PROOF. Since d is an element of  the quotient ring, there exists ,4 E ~ff with 
A d c  R. Observe that 

D(a) = da - ad 

for a EA.  Since D ( A ) c  A,  it follows that d/l c R. Hence d E S  using the 
second description of the two-sided quotient ring above. 

Basic properties of subgrings of the quotient ring are listed in the next 
lemma. See [4, §1] for proofs. 

LEMMA 6. Let R be a ~-prime ring. 

(i) R is embedded in S via left and right multiplication on R.  

(ii) Let s~ . . . . .  sn be elements o f  S. Then there exists A E ~ with sol c R and 
As~ C R for all i. I f  either As~ = 0 or s~A = O, then s~ = O. 

(iii) Let s E S  be an element o f  the two-sided quotient ring represented by 

f : ,~4 ~ R and g : AR - ,  R.  Then a f  = as and ga = sa for all a EA .  

(iv) The derivations ~x, x E g extend uniquely to derivtions o f  S (denoted by 
the same symbol). 

DEFINITION. Let R be a g-prime ring. 

(i) The extended center of R is defined to be the center of S. 
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(ii) The g-extended center of R is the subring of the extended center of  R 
consisting of elements vanishing under the action of g. 

(iii) R is said to be g-centrally closed if R contains its g-extended center. 

Let C denote the extended center of R and let F denote C ~, the subring of 

constants relative to g ( = the g-extended center of  R). 

LEMMA 7. F is a field. 

PROOF. Let q be a nonzero element of F and let A E :~ with 0 :/:'Aq C R. 

Let f :  A ---- R denote multiplication by q. Since q is central and Jx(q) = O, x E g, 

qA = A q ~ .  

Note that K = ker f i s  a g-invariant ideal of  R. Since Kq = 0 and q :/: 0, we 

have K = 0. Thus fhas  an inverse f - 1  :Aq --,A. It follows that q is invertible. 

We remark that C need not be a field. However, if g is finite dimensional, 

then C is a local ring finite dimensional over F. In fact, if g acts faithfully on C, 

then C • g is simple, End Cc.~ = F, C • g is Morita equivalent to F, and thus C 

is finitely generated as an F-module [2]. C is a g-prime ring whose maximal 

ideal is nilpotent by Lemma 1. 

The following proposition is a slight modification of  [4, Theorem 1.4]. 

PROPOSITION 8. Let R be a g-prime ring. Then S is a g-prime ring which is 

g-centrally closed. 

PROOF. It follows from Lemma 6(ii) that every nonzero g-invariant ideal of  

S contains a nonzero g-invariant ideal of R. Thus, it follows that S is g-prime. 

We must show that the g-extended center o rS  is contained in S, so let z be a 
nonzero element of the g-extended center. The element z has the properties 

that ~x(z) = 0 (xEg)  and 0 ~: z l  = lz  c S for some nonzero .q-invariant ideal 
I c S .  

Since z is central Iz is an ideal of  S, and because the action ofg is trivial on z 

and I is g-invariant, 

 x(SZ) = 6x ( s ) z ,  x g; 

thus lz  is g-invariant. 

Using Lemma 6(ii), we see that Iz  N R is a nonzero, g-invariant ideal of  R; 
therefore 

J = {a  E 1  l a zaR}  * O. 
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Note that J is a nonzero R - R bimodule contained in I. In addition Jx(z) = 0 

(x c 8) yields that J is g-invariant. 

Let A = J (3 R. Then A is a nonzero g-invariant ideal of R, that is, A C ~ .  

Define a map g : A --- R by 

ag = az, a C A .  

Since z is central in S, g is clearly an R - R bimodule map, so g represents an 

element c of C, the center of S. Now ag = ac = az for all a CA. 

Observe that A (c - z) = 0. We finish the proof by showing that c = z; for 

then ~x(c) = ~x(Z) = 0, so z = c OF.  Let B be a nonzero ~-invariant ideal of  S 

with B(c - z )  c S.  Let q C B ( c  - z )  and l e t / b e  a 0-invariant ideal of  R with 

lq C R .  Then, since c - z centralizes A, we have IqA = 0. Since A C ~" and R 

is g-invariant, Iq = 0, so q = 0. Thus B(c  - z ) =  0 so c - z  = 0. This com- 

pletes the proof. 

Restricted differential operator rings over quotient rings 

Let R be g-prime and let S = R~ be its quotient ring. The action of g on R 

extends uniquely to an action 8: g~Derk(S)  by Lemma 6(iii). With this 

extension we form S ,  g by extending coefficients. One must check that the 

twisting given by t and ~t makes S • g an associative ring. One way to do this is 

to write out the relations on 8, rt and t which are equivalent to the associativity 

of  R • ~, and then check that S • g is associative with the same twistings. 

Alternatively one may start out with the twisted semidirect product S ~9 g, 

and show that S @ g is a restricted Lie algebra; then S • ~ may be constructed as 
done for R • g. 

A less tedious way of  checking the associati;city of  S ,  ~ is as follows. Let 

= {• • I A where ~" denotes the set of nonzero g-invariant ideals of 

R. # '* consists of ideals having zero left and right annihilators, so we may 

construct the left quotient ring T of R • g with respect to ~ * .  As usual R • g 

embeds in T by right multiplications, and S embeds by the multiplications 

Y .~Va v --- Z .¢V(a~s), where Z ~a~ CA • 0, s CS  and As c R .  Then one checks 

that the subring of  T generated by S and R • ~ is precisely S • ft. Since T is 

associative, so too is S • ~. 

DEFINITION 9. Let R be a g-prime ring, and let R .  g C S .  g be the 

extension to S, the two-sided quotient ring of  R. Let I and J denote ideals of  

R • g and S • ~, respectively. 

(i) Define 
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and 

(ii) 

I v ffi { a E S . g l A a B  C l f o r s o m e A , B E ~ }  

j o  = j N (R .g). 

It follows easily that I v and j o  are ideals of  S • g and R • I], respectively (see 

[4, Lemma 2.9]). 

Relating ideals in R • g and ideals in S • g, we have the following partial 

correspondence, which shall be improved in Theorem 20 when g is finite 

dimensional abelian. 

LEMMA 10. Let R .g  be a restricted differential operator ring with R a g- 

prime ring. Consider the extension R • g c S • g. I f  P is a prime ideal o f  R • g 
with P f~ R ffi O, then pv  is a prime ideal o f  S • g with pro = p and pu N S = O. 

PROOF. Versions of  this lemma are proved for crossed products and 

differential operator rings in [4, Lemma 2.9, Lemma 3.3]. This lemma is 

proved in the same way. 

Consider the restricted differential operator ring S • g. Extending the field of  

scalars, set ge ffi g ® F.  Then the action J :  g--- Der S extends in the natural 

fashion to J: ~F__. DerF(S). It is also easy to see that C a" ffi C ~ ffi F.  Note that 

the elements .e~, x2 . . . .  E S  • g are S-linear independent, so their F-linear span 
is clearly i) F. Hence S • g ffi S • gF, a restricted differential operator ring of  gF 

over S. 

Outer actions 

R • g is said to have the ideal intersection property if every nonzero ideal of  

R • g has nonzero intersection with R.  The next result is similar to [2, Theorem 

1.2] in which R is assumed to be prime, but g need not be abelian. 

THEOREM 11. Let R • g be a restricted differential operator ring with R a g- 

prime ring and Q abelian. I f  no nonzero F-linear combination o f  elements o f  g is 

inner in S, then R ,g  has the ideal intersection property. 

PROOF. L e t / b e  a nonzero ideal o f R  • g and suppose that I N R -- O. Fix a 

basis (x,) for g. Let m be minimial among the total degrees of  nonzero 

elements o f / .  Our assumption on I implies that m > O. Let Vdenote the set of  

dim g-tuples v with I v I = m. Further, let W denote a subset of  V of  minimal 
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size subject to the condition that there is a nonzero element a C l  with 

lal = m, where Supp,n(a) = •w = {.~, [ vC  W}. 

Define for dim g-tuples v, 

Av = { r C R  I there exists a = Z a~X¢ C l  w i th  

av = r, Suppm(a) C xw and [ a I -< m }. 

Observe that for y C ~, a as in the definition of  Ao,, and to C W, 

[ ~ , a ] =  Y~ O y ( a u ) X u + a _ C I ,  l a - I  < m ,  
/~EW 

using the fact that g is abelian. It follows that Oy(a)CAo, for a CAO, and thus 
Ao, C ~  r. 

Fix to C Wand let A = Ao,. We may assume that our basis was chosen so that 

to = (toi . . . . .  to~) with to1 > 0. Define maps f~ :A ~A~ as follows. Let a CA 

and let a be as in the definition ofA = Ao,. It follows from the minimality of  IV 

that this a is unique. Write a = Z a~:¢" and define a f ,  = a,. The f~ are easily 

seen to be left R-module maps. Furthermore, if ~ C IV, f¢ is actually an R - R 

bimodule map. Note that fo, is the identity map. 

Let ~ C W and let c¢ be the element of  the extended center of  R represented 

byf~. Note that co, = 1. Let us drop subscripts and set c - c ¢ , f =  f t .  We claim 

that c C F,  the ~-extended center o fR .  To see this, let y C ~ and note that, by the 

formula for [y, a] above and the definition o f f ,  we have 

By I_emma 6(iii), 

dy(a) f = dr(a¢) = ~y(a f ) .  

~ (a)c  = t~(ac). 

Thus we conclude that a~(c)  = 0, so A J ( c )  -- 0. Therefore by Lemma 6(ii), 

&(c) -- 0, showing that c CF .  

Set to' = (to~ - 1 . . . .  , ton). (Recall that to1 > 0.) Using a CA and a as above, 

compute for r C R  

ar = Y, a~.~r + ao,,yd" + • • • 
#EW 

= Y. ((a~r)Yc ~ + au[Yc ~, r]) + ao,,rX°"+ . . .  
# ~ t f  

where we omit terms of  degree less than m except for the xo,' term. Given i > 0, 

let # =/~(i) be the element of  V with # ~ - - t o ' +  1. In particular # ( 1 ) =  to. 
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Observe that the coefficient of  ~ "  in ar depends on these i's and in fact, this 

coefficient is 

a,o,r + Y, aulz,~(r). 
i 

Now by the definition off ,  o, we have 

(ar) fo,, = (a fo,,)r + Y, (a f~)lti .dr(r). 
i 

Furthermore letting s denote the element of the left quotient ring of R 

represented by fo,,, we see that 

ars = a (sr + ~ c~lz~ .~i(r)) . 
1 

Thus 

A (rs - sr - ~, (C~lZ~).t~i(r)) = O, 
l 

so we see that [s, ] = ~,~ Iz,c~ as a derivation of R (and hence of S). Hence 

Z~ CulZ,6 ~ is inner in the left quotient ring of R. But now [,emma 6 applies to 
show that s ~ S. 

We saw above that c~ ~ F since/z E W, so Z, (c~/z~)x~ is an F- linear combination 

ofx~ ~ ~ which is inner in S. This linear combination is nonzero because when 
i = 1, we have/z - o~ c~ -- I and 0 </Zl < p, so the proof is complete. 

This theorem has a few immediate consequences. 

COROLLARY 12. Let R • ~ be as in the theorem. Then R • g is a prime ring. 

COROLLARY 13. Let R • ~ be as in the theorem and consider the extension 
to S • g. Then S • g has the ideal intersection property. 

PROOF. Observe that every nonzero ideal of  S ,  ~ intersects R ,~  in a 

nonzero ideal (Lemma 6(iii)), which, by the ideal intersection property, has 

nonzero intersection with R and hence with S. 
Let i -- i(g ~) denote the restricted Lie ideal of  ~F consisting of the F-linear 

combinations of elements of ~t whose action on S is inner in S. In particular if 
i = 0, then the hypotheses of the theorem are satisfied. Hence we have 



Vo1. 60, 1987 PRIME IDEALS 247 

COROLLARY 14. Let R • 0 C S • 0 be as above; i f i  -- 0, then both R • 0 and 

S • 0 have the ideal intersection property. 

Inner act ions  

Let R be g-prime. Again let i denote the ideal of  O F consisting of  elements of  

O F which become inner in S. Accordingly let dx be an element of  S such that 

[d~, ] = c~x for each x ~ i. 

For the following several lemmas, through Theorem 17, we assume that 

i = 0 e, that is, the action of  O F on S is inner in S. It is immediate that i = O e is 

equivalent to the action of  0 on S being inner. 

Note that F -- C, the extended center of  R since the action of  0 and O F is 

trivial on C, the center of  S. Also S is a prime ring because all ideals o f S a r e  0- 

invariant, and F is a field by Lemma 7. 

Let R ,  0 be a restricted differential operator ring and let S .  0 be the 

extension. Recall that S • O = S • O r. 

LEMMA 15. Let  E be the centralizer o f  S in S • O. Then S • 0 = S ®r E,  and 

E = F • O is a twisted restricted enveloping algebra over thefield F where g acts 

trivially on F. 

PROOF. As above let ~ = 2 - d ~  for x E o .  Then ~ E E ,  and (restricted) 

standard monomials in the {-¢i } form a free basis for S • 0 over S, where {x~ } is 

a basis for 0. Hence S • g = SE.  

Next suppose a ~ E .  Then a = 2; av~ v with av ES .  Since the ~ centralize S, 

as does a, we deduce that av ~ S N E -- F. Thus the -Or form a F basis for E. 

Next observe that for x, y E O, 

[Sc, ~] = [x, y] + [(x, y) ,  

where/'(x, y) is some element of  S and hence o f F .  Also 

~P = .¢[PJ + ~ ( x ) ,  

where ~t(x) is an element o f F .  Since E is an associative F-algebra with an F- 

basis consisting of  standard monomials in the -¢i, it follows that E is a 

restricted enveloping algebra over F,  twisted by / ' and  ~t. 

Finally let S ®r E ~ SE = S • 0 be the usual map. Note that each a ~ S ® E 

may be written uniquely as a = Y. a~ ® ~ where a~ G S; thus a is mapped to 

Z av$ ~ ~ S • 0, which is nonzero unless a = 0. Thus S ® E = S * 0. 

We now shift our attention to a more general setting. Let S be a centrally 
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closed prime ring with center F and let S ®FE be a ring with a subring E 

centralizing S. The next theorem, which is probably well known, describes a 

bijective correspondence between prime ideals of  S ® E having zero intersec- 

tion with S and the prime ideals of  E. In view of the preceding lemma, this 

result yields information on primes in S • ~ when the action of  ~ in inner in S. 

Let ~ denote the set of  nonzero ideals of  S, and let ® denote ®e. 

Since S ® E is a centralizing extension of  S we could make use of  results in 

[15]; however, our treatment is more direct relative to the study of  S ® E. 

LEMMA 16. Let S be a centrally closed prime ring which is a subring of  

S ® E where F is the center orS.  Then every nonzero ideal o f S  ® E contains an 

ideal A ® B where A and B are nonzero ideals o f  S and E respectively. 

PROOF. L e t / b e  a nonzero ideal o f S  ® E. Let a -- Z~ a~ ® e~ be an element 

of  I of  minimal length n among such expressions of  nonzero elements of  I. Fix 

the e I . . . . .  en E E  which occur in a. 

Define ideals A = B1, B2,. • . ,  Bn as follows. Let Bj = {s C S  [ there exists 

Z~ b~ ® e~ E I  with bj = s}. The Bj are nonzero ideals of  R,  and for each a CA 

there is a unique element fl = Z ai ® ei C I with a~ = a. Uniqueness follows 

from the minimality of n. Thus we can define maps ~ : A --- Bj by af j  = aj for 

all a CA. Since E commutes with S, the fj are S - S bimodule homomor- 
phisms. Let cj be the element of  the extended center of  S represented by ~. 
Then cj C F because S is centrally closed, and also cj # 0. 

Define 
n 

fl = ~ ci ® ei C E. 
i 

If a EA ,  there exists Z ai ® ei as in the definition of  A. By construction, 

aft = Z ac~ ® e~ = Z a f ® e~ = Z a~ ® et. Hence Aft c I. 

Since E commutes with S, we see that 

(S ® E)Af l (S  ® E)  = A ® EflE 

is a nonzero ideal o f S  ® E containing I. Setting B = EflE, we have the desired 
conclusion. 

THEOREM 17. Let S, E and S ® E be as in the lemma above. Let P be a 

prime ideal S ® E with P tq S = 0, and let L be a prime ideal o f  E. Then 

(i) P 0 E is a prime ideal o f  E with S ® (P N E)  = P. 
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(ii) S ® L is a prime ideal o f  S ® E with (S ® L) n E = L and (S ® L) O 

S = O .  

PROOF. (i) Let us first show that either P = 0 or P n E # 0. Suppose 

P ~ 0. By the previous lemma there exist nonzero ideals A C S and B c E 

with A ® B C P. Since E commutes with S, we have (A ® E)(S ® B) = 

A ® B C P. Since P is prime, and A ¢ P (because P n S --- 0), it follows that 

O ~ B c P A E .  
Let E = E/(P r3 E) and note that S ® E = (S ® E)/(S ® (P O E)). Consider 

the map S ® E ---, (S ® E)/P. The kernel of  this map is a prime ideal which has 

zero intersection with both S and ~¢. Applying the result of  the previous 

paragraph to S ® E, we see that the kernel is zero. Hence P = S ® (P O E). 

To show that P n E is a prime ideal of  E,  let Bt and B2 be ideals of  E with 

BIB2 c P n E. Since E centralizes S, we have (S ® B~)(S ® B2) = S ® BIB2 c 
S ® (P n E)  -- P. Thus the primeness of P forces S ® B,- C P for some i. 

Intersecting with E yields Bi C P O E, so P N E is prime. 

(ii) We show that S ® L is prime, the remaining assertions being trivial. Set 

IE = E/L.  Then S ® E ~-- S ® E / S  ® L.  Let I t and 12 be nonzero ideals of  

S ® E. Let A~ ® Bi be as in the lemma, with At ® B~ c I~, and Ai, B~ nonzero, 

i = 1, 2. Observe that ItI 2 3 (At ® BO(A2 ® B2) = AtA2 ® BtB2. Since both S 
and/~ are prime, we obtain ItI2 ~ O. Thus S ® E is a prime ring, so S ® L is a 

prime ideal of  S ® E. 

Incomparability 

It is convenient to note the following lemma. 

LEMMA 18. Let R • ~ be a restricted differential operator ring and suppose i 

is a restricted ideal o f  g o f  finite codimension. Let P1 C P2 be prime ideals o f  

R • g. Then there exist prime ideals QI c Q2 o fR  • i such that 
(i) Q~ is the unique minimal prime ideal o f  R . i  containing P~ n (R • i), 

i - -  1,2. 

(ii) I f  at -- Q2, then Pt N (R • i) = P2 N (R • i). 

(iii) l f  Pt n R = P2 N R,  then Qt n R = Q2 n R.  

PROOF. Observe that R • g = (R • i) • ~, some restricted differential opera- 

tor ring of  ~ = g/i, a restricted Lie algebra of  finite dimension. 

Set Ai = P~ n (R • i) and note that the A~ are g-prime ideals of  R • i. From 

Lemma 1 we see that there exist prime ideals Q~ c R • i satisfying (i). In fact, 
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by that lemma, Ai contains a power of Q~ and A~ --- (Q," 3). It now follows that 

Qt c Q2 and that (ii) is satisfied. 

To establish (iii), suppose that P1 n R = P2 O R. We have A~ n R = P~ n R, 

and Q, c A~; therefore, for some m, 

(Q~ N R )  m C P 2 A R  -~el A R  C QI A R. 

Since the Q; are i-invariant and Q~ N R is an i-prime ideal of R, we have 

Q 2 o R c Q ~ A R .  

TnEOR~.M 19. (Incomparability). Let R • ~t be a restricted differential opera- 
tor ring with g finite dimensional abelian. I f  Pi ~ P2 are prime ideals of  R • It, 
then Pt n R ~ P2 n R. 

PROOF. By passing to R/P~ n R we may assume that R is a g-prime ring and 

P~ n R = 0. We must show that P2 n R ÷ 0. 

We apply Lemma 10 and its notation to obtain ideals P~ and P~ o f S  • ~t. If 

P2 n R = 0 we have PlUg P~, PY n S = 0, and Py is a prime ideal of  S • 

(i = 1, 2). Thus it suffices to show that P2 v n S =~ 0. 

In view of the observation of the last paragraph, we may start with fresh 

notation. Let P~ ~ P2 be prime ideals of  S • ~ with P~ n S = 0. We shall show 

that P2 n S ~ 0. 
As previously mentioned we have S • fi -- S • fir, i ] r= g ® F. Also dime ge = 

dim 9, and we let i denote the restricted ideal of  i]e consisting of elements that 
are inner in S. 

First consider the case i =  ge. Then S .  g = S ® r E  where E is a finite 

dimensional algebra over the field F(Lemma 15). Using Theorem 17, P~ n E is 

a prime ideal of  E, which is maximal since E is finite dimensional. The ideal 
correspondence in that theorem immediately yields P2 O S ~ 0. 

Next suppose i = 0. Then the hypothesis of  Corollary 14 is satisfied, so 

again, P2 n S ~ 0. 

In the remaining case 0 ~ i ~ ~e, we have dime i < dime ~e. Notice that we 
may write 

S * ~ = S * ~  e - ( S , i ) , 3 ,  

some restricted differential operator ring of ~ = tte/i over the ring S • i = T. 

Since dime ~ < dim It, induction yields 

P t n  T # P2 N T. 

Note that the P, O T are ~-prime ideals of  T. Using Lemma 18 there exist 
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prime ideals Q~ c T with Q~ D Pi A T and QI ~ Q2. 

induction also yields 

QIf3S ~Q2oS; 

thus by Lemma 18(iii) P2 N S 4: Pl N S -- 0. 

This completes the proof of Theorem 19. 

Since dime i < dim ~, 

Minimal primes and going down 

Recall the maps v and t) considered in Lemma 10. The next result shows that 

these maps are inverses on primes having trivial intersection with the coeffi- 
cient ring, provided 0 is finite dimensional abelian. 

THEOREM 20. Let R • 0 be a restricted differential operator ring with O finite 
dimensional and abelian, and R a o-prime ring. The maps v and t) in Definition 

9 set up a one-to-one correspondence between the prime ideals o f R  • g having 

zero intersection with R and the primes o f  S *0 having zero intersection with S. 

Precisely: 

(i) I fP  is prime ideal ofR • 0 with P N R = O, then pv  is a prime ideal o fS  • g 
with pV f~ S = O, and pvt) = p. 

(ii) I f l  is a prime ideal o fS  *0 with I f~ S = O, then IO is a prime ideal ofR *0 
with It) f~ R = 0 and I t)v = I. 

PROOF. Let I be as in the statement of the theorem. In view ofLemma 10 it 
suffices to establish the conclusions concerning I. 

By an application of Zorn's Lemma, there exists an ideal Q c R • 0 maximal 

subject to It) c Q and Q tq R = 0. It follows from the 0-primeness of R that Q is 
a prime ideal. By Lemma 10, QVO = Q and QU is a prime ideal o f S  .~  with 

QVt3 S = 0. The theorem will follow once we show that Q U =  I, for then 
Q = QVt) = it) and, consequently, I t)v = Qu = I. 

Let ot~ I. There is an ideal A U ~r such that A a C I t3 (R * 0) = It). It follows 

immediately from the definition of  v that a E I  t)v. Thus I C I t)v C QV. Since 

I c QV are prime ideals, both having trivial intersection with S, Theorem 19 
yields I = QU. 

Induction can now be used to describe minimal primes in R • ~ when R is 0- 

prime and ~ is finite dimensional abelian. "Going Down" is an immediate 

corollary. 

THEOREM 2 I. Let R • ~ be as in the preceding theorem and let ~ denote the 

set of  minimal primes o f  R • ~, and set n = dim 0. Then 
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(i) P E 9 i f  and only i fP  n R = O, 

(ii) I ~ l  --< ~'~, 
(iii) ( N 9 )  p" = O, and N ~ is the unique largest nilpotent ideal of  R • ~. 

PROOF. Suppose first that R • ~ has a finite set of  primes ~ with nilpotent 

interesection and P O R = 0 for all P E 9 .  Then, by Incomparability, each 

P ~ 2 is surely a minimal prime. Also, the nilpotence of n 9 guarantees that 

the minimal primes of R • g form a subset of  2 .  Thus 9 is precisely the set of  

minimal primes of  R • g. Furthermore, being the intersection of  a finite set of  

primes, O 9 contains every nilpotent ideal. Thus to prove the theorem it 

suffices to establish the existence of  such a set 9 satisfying the nilpotence and 

cardinality statements (ii) and (iii). 

Let us reduce to consideration of  the extension S .  g, i.e., we claim that if 

S • ~ satisfies the conclusions of  the theorem, then so does R • ~. For suppose 

S • ~ satisfies the conclusions of the theorem with minimal primes 2 ;  then by 

Theorem 20, we see that 2 ° = {pD I p ~ 9 }  is a set of  primes o f R  .~  having 

zero intersection with R,  having size at most p", and which satisfies 

( O 2D) p" c ( n 2 )  p" = O. As in the first paragraph we conclude that 9 ~ is 

precisely the set of minimal primes of R .  ~ and evidently satisfies the 

conclusions of the theorem. 
We proceed by induction on n = dim ~ = dime ~F. We shall write ~ for ~e for 

the remainder of  the proof. Let i denote the ideal of  ~ consisting of  elements 

which are inner in S. 

If  i = O, Theorem 11 and Corollary 12 apply to show that S • g is prime, so 

the conclusions of  the theorem are trivially satisfied. 
On the other hand if i = ~, we may apply Theorem 17 and its notation. Here 

S • g = S ®r E where E is a p~- dimensional algebra over F.  Let .~ be the set of  

minimal primes o fE .  Then I-~ I =<- pn, ( n .~)P" = O, and A" is the radical of  E.  

By Theorem 17 we obtain the set 9 = {S ® L I L E.~'} of  primes o f S  @ E of  

size at most p~, having zero intersection with S. And since E centralizes S, 

( o 9)P" = O. Hence we are done in this case. 

In the remaining case we have 0 ÷ h ~ g. Let ~ = ~/i, i = dim i, and j = 

dim ~ = n - i. Also let T denote S • h so that S • ~ = T • ~. 

Let N~ be the unique minimal prime of  S as described by Lemma 1. Let 

N = (N 0 : i) and note that N is an i-prime ideal of S. Consider T/(N • i) = 

(S/N) • i. Since dim i = i < n, induction yields a set of  primes .~' of  T, 

minimal over N .  i, such that Q ' E  .~' if  and only if 

Q ' A S = N ,  I.~'l___<p ~ and ( n . ~ ' ) P ' c N . h .  



Vo1. 60, 1987 PRIME IDEALS 253 

Let a = {(Q': g)] Q 'E.~ ' ) ,  a set of  0-primes of  T. Obviously I-~1 ~ pi. 
Since Q ~ .~ is g-invariant, it follows that Q n S --- 0 because S is e-prime. Also 
notice that ( n .~)P' is ~-invariant and contained in N • i; therefore, 

( n a )  p' c ((N • i) : ~) c (N: g) • i = 0. 

Proceeding to primes of S • g = T • ~, induction now yields a set of  primes 

~'e of S • g (for each Q E.~) satisfying 

P A T = Q ,  I~e l_ -<p  j, and ( n ~ , e ) p ' c Q , ~ ,  

and ~'o is the set of  primes of  S • g minimal over Q • ~. 

Let ~ = Uoe~ g o ,  a set of  primes o f S  ,g.  First observe that for P C  ~'Q, 
P N S -- (P N T) N S = Q n S = 0. Secondly, observe that 

I~' l--< Y. I~'ol--< I.~t .tO 

< pipi = p, .  

Finally, 

/ ) '(  ) ( n  ~,)~" - N ( n #Q) c n ( n  ~Q)oJ p' 

C ( N Q * ~)P' = (( n .~) • g)p' 

c ( n .~)p', g. 

But we saw above that ( n ~)P' = 0, so, in fact, ( n ~)P" = 0. Thus ~ is 

precisely the set of  minimal primes of S • g and satisfies the conclusions af  the 
theorem. 

COROLLARY 22. Let R • g be given with g finite dimensional abelian. Let 

AI C A2 be ~-primes o f  R ,  and suppose t'2 is a prime ideal o f  R ,g  with 
P2 n R = A2. Then there exists a prime ideal P~ o f  R • g such that PI n R = A~. 

PROOF. We may assume that At = 0 so that R is e-prime. The theorem says 

that a minimal prime P~ contained in/ '2 satisfies P~ n R -- 0 --- A,. D 

Prime and primitive rank 

A ring R is said to have prime rank n if  n is the smallest integer such that R 

has no chain of prime ideals of  length greater than n. Primitive rank is defined 

by replacing "prime" with "primitive". If no such bound exists, R is said to 
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have infinite rank. The next theorem shows that if g is finite dimensional 

abelian, the ranks of  R and R • g agree. 

The following lemma shows how primitive ideals of  R and R • {l are related. 

If  A is an ideal of  R,  let A denote the ideal (A : ~) • ~ of  R • {l. The minimal 

primes over A are the prime ideals of  R • {l, minimal subject to containing .4. 

LEMMA 23. Assume that {l is finite dimensional. 
(i) Let P be primitive ideal o f  R • {l. Then N(P n R) is a primitive ideal o f  R.  

(ii) Let Q be a primitive ideal o f  R.  Then the minimal primes overO, in R • {l 
are all primitive. 

PROOF. (i) Let P be a primitive idealofR • {l which is the annihilator of  the 

irreducible right R • ~ module V. Of  course V is a cyclic R • ~-module, so it is 

finitely generated as an R module. 

By Zorn's Lemma, V has a maximal proper right R-submodule M. Set 

W = V/M, and Q = annR W. 

We show that N(P n R) = Q. Clearly annR V = P O R c Q. Thus, since Q 

is prime, N(P O R) c Q. Conversely, notice that V(Q : {l) c VQ c M.  Thus 

V. Q. = V(R • {l)(Q : {l) = v ( a  : {l) c M. 

But V is an irreducible R • ~-module so V. (2 = 0. This implies that (Q : ~) c 

P o R,  so Q" c P n R for some m by Lemma 1. Thus Q c N(P n R). 
(ii) Let W be an irreducible right R-module with annihilator A. Let V = 

W ®R R • {l be the usual induced module. 

By considering equations of  the form (W ® 2~)a = 0 (a E R • ~) we deduce 
that annR., V = .4. 

Define submodules Is, of  V by V, =Zivl< i W ® 2  v for all i=<m = 

(p - 1)dim g. Then W = V0 C V) C • • • C Vm = V, and this is a chain of R 

submodules of  V. Define I?/= V,/V~_ t. Then ~ is a finite sum of copies of  W. 

It follows that Vhas finite composition length as an R-module, and from this it 

is immediate that V has a composition series as an R • {t-module. Denote the 

annihilators of  the composition factors of  VR,~ by P~ . . . .  ,P , .  Now 

V. P~. • • P, = 0, so Pt" • • P, C annR., V = A. Thus any minimal prime over`4 

is equal to P~ for some i. 

THEOREM 24. Let R • {l be given with {l finite dimensional abelian. Then 

the prime (primitive) rank o f  R • {l is equal to the prime (primitive) rank o f  R.  

PROOF. Let PoE" • "~ P, be a chain of  prime ideals o f R  • {l. Then, for each 

i, Q~ = N(P~ n R) is the unique minimal prime over P~ n R by Lemma 1. Thus 
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Q 0 ~ . . . ~ Q ,  

is a chain of  prime ideals of R, where the inclusions are strict by Theorem 19 
and Lemma 18(ii) (with i = 0). 

Conversely, suppose Q0~ ' "  "~ Q, is a chain of primes of R. Applying 
Lemma 1, we obtain Q6 ~ ' "  "~ Q' ,  a chain of ~-primes of R with Qf = (Q~: ~t). 
By Lemma 4 there is a prime ideal P. of R • ~ with P, n R = Q' .  Successively 
applying Going Down (Corollary 22) now yields a chain of  primes of R • ~, 

P0g...gP,, 

such that P, n R = Q; and P~ is a minimal prime over Qi = Q' * ft. 
Thus we have shown that a chain of primes at length n in R • ~ gives rise to 

such a chain in R, and vice-versa. To prove the part about primitive rank, we 
invoke Lemma 23 and replace "prime" with "primitive" throughout the 

above. 
The results above on prime and primitive ranks can be used to study these 

ranks in the subring of constants R ~ as is done for crossed products in [12]; 
however, it appears that this would require the assumpt ion  that u(g) is 
semisimple (analogous to the assumption I G I -~ ~ R  for crossed products 
R ,  G). This implies that ~ is abelian [8], and after extending the field of 
scalars, u (~)~  (kG)* for some finite group G (see [1]). Thus this situation is 
somewhat special and can be studied in the context of group-graded rings, as is 
done for certain questions in [1]. 

An example 

Work on finite normalizing extensions [5, 6] and intermediate normalizing 
extensions [7] yield generalizations of  results~for crossed products of finite 
groups [ 12]. We present an example, pointed out by D. S. Passman, to show 
that restricted differential operator rings are not covered by this material on 
normalizing extensions. 

Let R he a local ring will radical J.  Let S = Z Rx~ be a finite normalizing 
extension o fR .  Consideration of the map R ~ Rxt shows that Jxi is the unique 
maximal left submodule of Jxi.  Since Rxi = x~R, we see that xiJ is a left 

submodule ofx~R. Hence x~J c Jx~, and by symmetry x~J = Jxi. Thus we have 

SJ  = JS. 

Further suppose that R is a local k-algebra (char p > 0) with a derivation c~ 
satisfying c~ p = 0 and ~(r) = l for some r ~ J .  Then we may form the restricted 

differential operator ring R • ky, where [y, r] = 6(r), r ~ R ,  and yP = 0. It is a 
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simple matter to construct such rings R; for example let R = k[t  I t" -- 0] and 
let J = d /d t .  

Suppose that R c R • ky c S where S is a finite normalizing extension o fR.  
Then JS = SJ as above. Now 1 E J(J) = [y, J] c S J, so JS = S. But this 
contradicts Nakayama's Lemma, since S is a finitely generated R-module. 
Thus R • ky is not an (intermediate) normalizing extension. 

In closing we remark that Theorem 17 yields information on Hopf  algebra 
smash products R ~: H where R is a centrally closed prime ring and the action 
of  H i s  inner on R. Here R 4~H = Rt[H] = R ® Ct[H] where Rt[H] and Ct[H] 

are twisted smash products with trivial actions, and Ct(H) centralizes R [3]. 
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